life-spans found among tropical tree species, great diversity of life-history strategies and our paper, namely, that given the technical issues for which we are not experts. We appreciate and accept their corrections on these concerns. In the evolution of this diverse array of tropical rain forest (TRF) tree ages. We already stated that the dynamic nature of TRF tree community regeneration is involved in the discovery of ancient TRF trees of ~2000-years old. We, therefore, disagree with the statement of Chambers and Trumbore that radiocarbon dating is the only way to directly determine the age of a TRF tree. Rather, this is the most accurate and useful method to date ancient trees, but other methods might work better for other trees. Furthermore, ancient trees might not represent the major component of a TRF tree community. Indeed, from the 20 big trees that Chambers et al. dated with \(^{14}C\), nine were >500-years old. The remainder were younger, including five of ~200-years old. Wood density, which is inversely related to growth rate, could be used to select candidate trees for dating with \(^{14}C\). The current high-cost, and technical complexities of the \(^{14}C\) dating method, limit its use as a standard method, especially in population-level ecological studies. Long-term monitoring, the length of which (few years to several decades) will depend on species life-history characteristics, might provide not only a complementary way to estimate ages in TRF trees, but can also generate rich data sets to explore and understand the underlying biological basis of inter-tree age variation.

Acknowledgements
We acknowledge Alfredo Cuárron for helpful discussions.

Miguel Martínez-Ramos
Departamento de Ecología de los Recursos Naturales, Instituto de Ecología, Universidad Nacional Autónoma de México, Campus Morelia, Apartado Postal 27-3, Xangari 58089, Morelia, Michoacán, México

Elena R. Alvarez-Buylla
Departamento de Ecología Evolutiva, Instituto de Ecología, UAM, Apartado Postal 70-275, México D.F. 04510, México

*Author for correspondence (e-mail: alvarezbuyllat@servidor.terra.com.mx)

References

Fig. 1. Oversimplified logistic growth trajectories for hypothetical trees of different successional status: ES, early successional (pioneer); MS, mid-successional; LS, late successional (climax) species. In each curve, growth trajectories are divided into three life cycle stages: (i) slow growth; (ii) rapid growth; and (iii) equilibrium. At the equilibrium stage, when photosynthetic carbon gains and respiratory costs are in balance, trees do not experience any additional growth. Time is shown in a logarithmic scale, and tree size (diameter at breast height, dbh) in a relative scale. Arrows at the top of the figure indicate the increasing usefulness of the dating approaches.