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Abstract: Global plant trait studies have revealed fundamental trade-offs in plant resource
economics. We evaluated such trait trade-offs during secondary succession in two
species-rich tropical ecosystems that contrast in precipitation: dry deciduous and wet
evergreen forests of Mexico. Species turnover with succession in dry forest largely
relates to increasing water availability and in wet forest to decreasing light availability.
We hypothesized that while functional trait trade-offs are similar in the two forest
systems, the successful plant strategies in these communities will be different, as
contrasting filters affect species turnover.
Research was carried out in 15 dry secondary forest sites (5-63 years after
abandonment) and in 17 wet secondary forest sites (<1-25 years after abandonment).
We used 11 functional traits measured on 132 species to make species-trait PCA
biplots for dry and wet forest and compare trait trade-offs. We evaluated whether
multivariate plant strategies changed during succession, by calculating a 'Community-
Weighted Mean' plant strategy, based on species scores on the first two PCA-axes.
Trait spectra reflected two main trade-off axes that were similar for dry and wet forest
species: acquisitive versus conservative species, and drought avoiding species versus
evergreen species with large animal-dispersed seeds. These trait associations were
consistent when accounting for evolutionary history. Successional changes in the most
successful plant strategies reflected different functional trait spectra depending on the
forest type. In dry forest the community changed from having drought avoiding
strategies early in succession to increased abundance of evergreen strategies with
larger seeds late in succession. In wet forest the community changed from species
having mainly acquisitive strategies to those with more conservative strategies during
succession. These strategy changes were explained by increasing water availability
during dry forest succession and increasing light scarcity during wet forest succession.
Although similar trait spectra were observed among dry and wet secondary forest
species, the consequences for succession were different resulting from contrasting
environmental filters.
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Abstract 19 

Global plant trait studies have revealed fundamental trade-offs in plant resource economics. 20 

We evaluated such trait trade-offs during secondary succession in two species-rich tropical 21 

ecosystems that contrast in precipitation: dry deciduous and wet evergreen forests of Mexico. 22 

Species turnover with succession in dry forest largely relates to increasing water availability 23 

and in wet forest to decreasing light availability. We hypothesized that while functional trait 24 

trade-offs are similar in the two forest systems, the successful plant strategies in these 25 

communities will be different, as contrasting filters affect species turnover.  26 

Research was carried out in 15 dry secondary forest sites (5-63 years after abandonment) and 27 

in 17 wet secondary forest sites (<1-25 years after abandonment). We used 11 functional 28 

traits measured on 132 species to make species-trait PCA biplots for dry and wet forest and 29 

compare trait trade-offs. We evaluated whether multivariate plant strategies changed during 30 

succession, by calculating a ‘Community-Weighted Mean’ plant strategy, based on species 31 

scores on the first two PCA-axes. 32 

Trait spectra reflected two main trade-off axes that were similar for dry and wet forest 33 

species: acquisitive versus conservative species, and drought avoiding species versus 34 

evergreen species with large animal-dispersed seeds. These trait associations were consistent 35 

when accounting for evolutionary history. Successional changes in the most successful plant 36 

strategies reflected different functional trait spectra depending on the forest type. In dry forest 37 

the community changed from having drought avoiding strategies early in succession to 38 

increased abundance of evergreen strategies with larger seeds late in succession. In wet forest 39 

the community changed from species having mainly acquisitive strategies to those with more 40 

conservative strategies during succession. These strategy changes were explained by 41 

increasing water availability during dry forest succession and increasing light scarcity during 42 

wet forest succession. 43 
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Although similar trait spectra were observed among dry and wet secondary forest species, the 44 

consequences for succession were different resulting from contrasting environmental filters. 45 

Keywords: dry deciduous forest, functional trait, functional trait trade-off, functional strategy, 46 

Mexico, secondary succession, PCA, wet evergreen forest  47 

  48 
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Introduction 49 

Trade-offs in plant traits and resource economics are consistent at the global scale [1,2,3]. 50 

These give insight into comprehensive dimensions of multivariate functional trait variation, 51 

or what we call ‘functional trait spectra’. As functional traits are indicators of ecological 52 

strategies, the study of trait spectra and trade-offs allows us to explore the complex interplay 53 

of different strategies [4]. For example, the worldwide leaf economics spectrum runs from a 54 

plant strategy with cheap-to-construct acquisitive leaves with high photosynthetic rates that 55 

maximize resource capture to a strategy with expensive-to-construct conservative leaves that 56 

tolerate stress and physical damage and better conserve the acquired resources [2]. Such an 57 

economic spectrum has not only been found for leaves, but also for other plant organs like 58 

roots and stems [3,5], and it has been found across different climatic regions [2,6]. This 59 

economics spectrum at the tissue level underlies the trade-off between growth and survival at 60 

the whole-plant level [7], as in resource rich environments acquisitive strategies thrive by fast 61 

growth (and high mortality) whilst in resource-poor environments conservative strategies 62 

thrive by persistence (and high survival). This fundamental trade-off describes variation 63 

among plants in the established phase. In contrast, different trade-offs are found in the 64 

regenerative phase, where plants have to arrive and establish successfully at a site. As a 65 

result, traits related to the regenerative phase are largely decoupled from those related to the 66 

established phase [8]. The trade-off between seed size and seed number plays an important 67 

role in explaining the differential success of species in the regenerative phase [e.g. 9]. Small 68 

seeds are produced in large numbers and are often wind-dispersed, which is advantageous 69 

when colonizing new sites [10], but their small seed size comes at the expense of a lower per 70 

capita establishment success [11]. Large seeds produce robust seedlings [12], which is 71 

advantageous when colonizing shaded sites [13], and they are often animal-dispersed, 72 

enhancing directed dispersal to safe sites [14]. 73 
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These traits and trait trade-offs are used to explain species’ success along successional 74 

gradients. In tropical wet forest, succession is related to a gradient of decreasing light 75 

availability over time [e.g. 15] whereas in dry forest it is related to a gradient of increasing 76 

water availability over time [16,17]. Dry forest species experience, therefore, stressful 77 

conditions during the dry and hot early stages of succession, while wet forest species do so 78 

during the shaded late stages of succession. We showed previously that, at the community-79 

level, the community-weighted mean (CWM) of individual functional traits changed with 80 

tropical forest succession in Mexico [17]. The type of traits that changed differed largely 81 

between dry and wet forests [18]. In dry forest early-successional communities had trait 82 

values related to drought tolerance and optimal light acquisition, whereas late-successional 83 

communities had trait values related to large seeds and biotic dispersal. In wet forest early-84 

successional communities also had trait values related to optimal light acquisition, whereas 85 

late-successional communities had trait values related to increased leaf toughness. Here we 86 

expand on the previous analysis, and explore differences in species-level trait trade-offs 87 

between dry and wet forest species, and to what extent this can be translated into different 88 

multivariate plant strategies between dry and wet forest species. Since environmental 89 

gradients filter species based on multiple traits, identifying changes in multivariate plant 90 

strategies is needed to further advance our understanding of ecological restoration [cf. 19]. 91 

The present study focuses on trait trade-offs at the species level, and how multivariate plant 92 

strategies change during succession. To this end we described plant strategies using 11 93 

functional traits measured on 132 species found in 32 secondary forest sites belonging to dry 94 

and wet tropical forest in Mexico. We hypothesized the existence of two major trait- or 95 

strategy spectra, namely the spectrum of species with acquisitive versus those with 96 

conservative trait values, which is important in the established phase of plants, and the 97 

spectrum of small seeded wind-dispersed species versus large seeded animal-dispersed 98 
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species, which is important in the regeneration phase. We expected that in dry forest water is 99 

the main limiting factor, and that tree communities show a change from predominantly 100 

conservative to acquisitive strategies over time, whereas in wet forest light is the main 101 

limiting factor, and the communities show a change from predominantly acquisitive to 102 

conservative strategies over time. We also expected that the seed size spectrum would play an 103 

important role in both forest types, reflecting an increase in the proportion of large seeded 104 

animal-dispersed species along succession. 105 

Methods 106 

Ethics statement 107 

Since all secondary forest plots are located on privately owned land, permission from 108 

landowners to enter the sites and collect plant material was provided before conducting this 109 

research.  110 

Research locations 111 

Tropical dry forest. Research plots in tropical dry forest surround the village of Nizanda on 112 

the Pacific watershed of the Isthmus of Tehuantepec in Oaxaca, southern Mexico (16°39’N, 113 

95°00’W). Mean annual temperature is 26 °C and mean annual precipitation is 900 mm, of 114 

which > 90 % concentrates between late May and mid-October [20]. The vegetation is 115 

predominantly tropical dry deciduous forest, characterized by a low canopy stature (ca. 7 m 116 

tall) [21,22]. The 15 secondary forest plots (900 m
2
) with different fallow ages (6-64 years) 117 

were established on abandoned maize fields. Within each plot four parallel 5  20 m transects 118 

were set up, and further divided into four 5  5 m quadrats. In one quadrat all individuals 119 

with DBH ≥ 1cm were identified and measured, in a second all individuals with DBH ≥ 2.5 120 

cm and in the remaining two all individuals with DBH ≥ 5 cm, with these sampling criteria 121 

being randomly assigned to each quadrat. Variables measured on each individual were scaled 122 
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up to the plot level according to sampling effort per size-class (i.e., all stems 1 cm ≤ DBH ≤ 123 

2.5 cm were multiplied by four, and 2.5 cm ≤ DBH ≤ 5 cm by two, to make sampling effort 124 

comparable across size-classes, after which all stems are added up). For further details see 125 

Lebrija-Trejos et al. [20]. 126 

Tropical wet forest. Research plots in the tropical wet forest surround the village of Loma 127 

Bonita in the Marqués de Comillas region in Chiapas, southeastern Mexico (16°01’N, 128 

90°55’W). Mean annual temperature is 24 °C and mean annual precipitation is 3000 mm, 129 

with a dry period (< 100 mm month
-1

) from February through April [23]. The research area is 130 

characterized by small hills and valleys with sandy and clay soils of low pH (< 5.5). The 17 131 

secondary forest plots (1000 m
2
) with different fallow ages (< 1-25 years) were established 132 

on abandoned maize fields. Each plot was divided into two 10  50 m subplots. In one 133 

subplot all individuals with DBH ≥ 1 cm were identified and measured, in the second all 134 

individuals DBH  ≥ 5 cm. Again, measured variables were scaled to the plot level up 135 

according to sampling effort per size-class (i.e., stems 1 cm ≤ DBH ≤ 5 cm were multiplied 136 

by two to make sampling effort comparable to DBH ≥ 5 cm, after which all stems are added 137 

up). 138 

Functional traits 139 

Those species that made up at least 80 % of the basal area in the plots were selected for 140 

functional trait measurements (excluding cacti in dry forest, as their functional traits are 141 

difficult to compare with trees), because they accurately describe the community-weighted 142 

mean [24,25]. This resulted in a total of 132 species: 51 dry forest species and 81 wet forest 143 

species (see Table S1 in supplementary materials for the list of species per forest type). We 144 

measured seven leaf traits: leaf area (m
2
), specific leaf area- SLA (m

2
/kg), leaf dry matter 145 

content- LDMC (g/g), leaf density (g/cm
3
), leaf thickness (mm), leaf compoundness 146 
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(0=simple, 1=compound), petiole length (cm); one whole plant trait: deciduousness 147 

(0=evergreen, 1=deciduous); one stem trait: wood density- WD (g/cm
3
); and two regenerative 148 

traits: seed size (mm
3
) and dispersal syndrome (0=abiotic, 1=biotic). Traits were measured 149 

following standardized protocols [26,27]. In the wet forest sites, leaf traits were measured for 150 

two sun-lit leaves for 10 adult trees per species (5 individuals for specific force to punch) of 151 

ca. 5 m high, and in dry forest for 5 sun-lit leaves for 5 adult trees per species with a DBH of 152 

10-30 cm. Functional trait measurements took place within the study areas, but not inside the 153 

plots. For wood density measurements in the wet forest 15 of the 81 species were taken from 154 

comparable Mexican ecosystems. The binary traits leaf compoundness, deciduousness, and 155 

dispersal syndrome were scored based on field observations, local informants, herbaria, and 156 

literature; for detailed methods on functional trait measurements see supplementary material 157 

in [18]. We used species’ average trait values although we recognize that intraspecific trait 158 

variation may play an important role in species adaptation along environmental gradients. 159 

However, given the extensive species-level trait data set (132 species) together with the high 160 

species turnover during succession, for the purpose of this study we consider the use of 161 

species average trait values appropriate to test our hypotheses. 162 

Statistical analysis 163 

We used principal component analysis to quantify spectra of trait-based multivariate plant 164 

strategies for each forest type separately. The PCA biplots show the main trade-offs across 165 

(standardized) functional traits based on principal axes of variation, where binary variables 166 

are treated as dummy variables. Trait spectra for dry and wet forest species were compared 167 

by correlating the correlation coefficients of all pairwise trait combinations; in each site 11 168 

traits were measured, resulting in 55 pairwise trait correlations per site. Subsequently the 169 

pairwise trait correlation coefficients derived from dry forest species were correlated with the 170 

pairwise trait correlation coefficients derived from wet forest species. Spearman correlation 171 
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coefficients were used, since not all traits are normally distributed, except for relating the 172 

binary variables [deciduousness (De), leaf compoundness (LC) and biotic dispersal (Di)] 173 

when we used the Phi coefficient, a measure of association between binary variables whose 174 

interpretation is similar to correlation coefficients. 175 

We also examined whether the trait associations found were influenced by evolutionary 176 

histories. To this end, we recovered phylogenetic trees for the dry forest species and the wet 177 

forest species using Phylomatic [28], scaling branch lengths to one. For all traits and each 178 

forest type we explored phylogenetic signal (Blomberg’s K [29]) and compared this to 179 

random trait distributions over the phylogenetic tree, using the package “Picante” [30]. 180 

Phylogenetically independent contrasts were computed as the difference in the mean trait 181 

values for pairs of sister species and nodes, using the package “Ape” [31] and we compared 182 

whether trait associations were similar with and without considering phylogeny [32].  183 

Species scores on the first two principal components of the PCA were scaled up to 184 

community level using the Community Weighted Mean (CWM) [24,33], which is calculated 185 

as follows: 186 

     ∑      

 

   

 

where S is the total number of species, wi is the relative basal area of the i
th

 species and xi is 187 

the score on the PCA axis of the i
th

 species. Relative basal area is a measure of species’ 188 

relative contributions to the total basal area represented by functional trait measurements in 189 

each plot (which is in turn at least 80 % of total basal area in a plot). The relative basal area 190 

was used for weighting, rather than the abundance, because it reflects the species’ biomass, 191 

an indicator of plant performance and adaptation to local conditions. These community 192 

weighted mean scores on the PCA axes reflect the average multivariate plant strategy in the 193 

community, and were regressed against stand basal area (m
2
/ha) (including cacti in the case 194 
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of dry forest). Stand basal area is a structural variable of succession and logarithmically 195 

relates to forest age in both forest types [see supplementary material in 18]. Stand basal area 196 

was used, and not age, because it better reflects aboveground biomass, understory light 197 

interception and environmental conditions [16] as well as competitive interactions [34]. All 198 

statistical analyses were carried out using R v. 2.13.1 [35]; for multivariate analysis we used 199 

the package ‘Vegan’ [36]. 200 

Results 201 

The first two component axes of the PCAs for dry and wet forest species captured more than 202 

half of the variation in species trait values (Fig. 1, Table 1). The ordination biplots indicated 203 

that the spectra of functional trait-based strategies of the dry forest species were similar to 204 

those of the wet forest species. This was confirmed when the pairwise correlation coefficients 205 

of the dry forest were plotted against those of the wet forest (Fig. 2, Table 2); the highly 206 

significant positive correlation indicated that the same trait associations were found for the 207 

species of the two forest types. The first PCA axes were largely related to phenology and 208 

reproductive strategies, with deciduous, small-seeded wind-dispersed species on the left side, 209 

and species with large seeds, biotic seed dispersal, and thick leaves on the right side (Fig. 1). 210 

We will therefore refer to this axis as the deciduousness/ reproductive effort strategy axis. 211 

The second PCA axes were related to the plant economics spectrum, with species having 212 

acquisitive trait values (e.g., high SLA) at the lower side, and those having conservative trait 213 

values (e.g., high leaf density, LDMC and WD) at the upper side (Fig. 1). We refer to this 214 

axis as the acquisitive/conservative strategy axis.  215 

There were also some differences between forest types. For example, plants with large 216 

leaf laminas and petioles (high LA and PL) had an acquisitive strategy in dry forest (as they 217 

were associated with high SLA), whereas such plants rather coincided with a drought 218 

avoiding strategy in wet forest (as they were associated with deciduousness, Fig. 1). 219 
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Moreover, in dry forest a conservative strategy tended to be associated with a drought 220 

avoiding strategy, as the suite of conservative traits (LD, LDMC, WD) tended towards the 221 

left side of the biplot where species that are deciduous are positioned. Instead, in wet forest a 222 

conservative strategy tended to be associated with species that also have large seeds and that 223 

are biotically dispersed, as the conservative traits tended towards the right side of the biplot 224 

where evergreen species that invest in large biotically dispersed seeds are positioned. 225 

Phylogenetic analyses showed that most traits were distributed non-randomly over the 226 

phylogenetic tree (Table S2). Correlating the coefficients of the pairwise trait associations 227 

(Table 2) with the associations based on their phylogenetic independent contrast (Table S3) 228 

resulted in very tight relationships (Pearson coefficients of 0.97, P< 0.001, for both dry and 229 

wet forest), indicating that the phylogenetic signal did not confound the multivariate trait 230 

strategies found in this study. 231 

Directional changes in community-weighted PCA scores indicated successional 232 

turnover in multivariate plant strategies for both forest types (Fig. 3). Interestingly, the main 233 

axis that mattered was different for dry and wet forest. Successional changes in dry forest 234 

were associated with increasing species scores along the first PCA axis (from high 235 

importance of deciduousness early in succession to increased reproductive effort later in 236 

succession; Fig. 3a), whereas successional changes in wet forest were associated with 237 

increasing species scores along the second PCA axis (from acquisitive trait values early in 238 

succession to conservative trait values later in succession; Fig. 3b). Results were similar 239 

when using age instead of basal area, though dry forest change in multivariate plant strategies 240 

proved somewhat stronger whereas wet forest change was weaker and no longer significant 241 

(see Figure S1 in Supporting Information). 242 

Discussion 243 
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We found that tree species from communities growing under very contrasting conditions (dry 244 

and wet) face similar functional trait trade-offs, thus confirming the existence of universal 245 

trait spectra. The functional turnover with succession in the two forest types, however, 246 

reflected different trait spectra, and hence, the changing dominance of different plant 247 

strategies. During dry forest succession, species strategies shifted from high importance of 248 

deciduousness early in succession towards increased reproductive effort late in succession, 249 

whereas during wet forest succession species strategies changed from acquisitive towards 250 

conservative strategies. This indicated that dry and wet forest species face different filters 251 

during forest succession. 252 

Associations between traits may be influenced by evolutionary history, where the 253 

presence of particular clades with contrasting characteristics could confound their ecological 254 

interpretation [32]. Phylogenetic analyses showed that although most traits showed 255 

significant phylogenetic signal, this did not influence the trait associations found, similar to 256 

previous studies [e.g. 6]. Therefore, below we discuss the multivariate trait spectra found in 257 

this manuscript in terms of ecological strategies and their relevance for succession in dry and 258 

wet tropical forest.  259 

Dry and wet secondary forest species showed similar trait trade-offs 260 

We hypothesized the existence of two major trade-off axes underlying trait variation in dry 261 

and wet forest species, namely the acquisitive-conservative spectrum, and the seed size 262 

spectrum, with the spectra reflecting multivariate strategy axes. Our results largely confirmed 263 

this hypothesis. The first principal component reflected variation from a deciduous strategy 264 

with abiotically (mainly wind-) dispersed species towards evergreen species that invested in 265 

biotic seed dispersal, in the dry forest biotic seed dispersal also coincided with an increased 266 

seed size (Fig. 1). Deciduous species shed their leaves to avoid desiccation and this is an 267 
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important adaptation to survive severe droughts [17,37,38], which are common in dry forest 268 

sites. In both dry and wet forests, deciduous species often also had compound leaves. 269 

Compound-leaved species often have photonastic leaves, which can avoid high insolation and 270 

therefore high temperature and excessive evaporation by folding their leaflets at noon or 271 

during the dry season (e.g., some Fabaceae species). Compoundness also increases leaf 272 

cooling and control of water loss [39] and is an efficient way of increasing leaf area for light 273 

capture [40]. In both dry and wet forest deciduousness was independent of the acquisitive-274 

conservative continuum, suggesting that deciduous and evergreen species can possess similar 275 

resource economics. This is contrary to previous research in temperate forests [41] and across 276 

forest types [42]. In line with our results, evidence from another Mexican dry forest shows 277 

that the deciduous-evergreen dichotomy does not adequately reflect the variation in leaf and 278 

stem functional traits [43]; instead, the duration of leaf retention during the dry season 279 

reflects this variation better and correlates with resource economics, where conservative 280 

species retain their leaves longer during the dry season. 281 

Biotically dispersed, evergreen species, having large seeds (in dry forest) and thick 282 

leaves marked the other end of the deciduousness/reproductive effort strategy axis. The 283 

positive correlation between seed size and biotic dispersal in dry forest has been widely found 284 

[44]. The lack of association in wet forest could be due to the fact that most species are 285 

biotically dispersed, here differences in seed volume may instead be related to different 286 

animal disperser-groups rather than the abiotic-biotic dichotomy. Biotic dispersal enhances 287 

the chance to be dispersed to safe sites, whereas larger seed size increases establishment 288 

success [12], which is important in shaded environments [13]. Across plant communities 289 

thicker leaves are associated with evergreen plants, confirming leaf thickness as a predictor of 290 

leaf lifespan [45]. Within a Bolivian tropical moist forest, however, leaf thickness is largely 291 

unrelated to leaf lifespan [46]. The association between abiotic dispersal and deciduousness 292 
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was expected: wind dispersal is common in tropical dry forest and such wind-dispersed seeds 293 

are predominantly dispersed in the dry season, when most deciduous species have shed their 294 

leaves and the forest canopy is more open, leading to more efficient wind dispersal [47,48]. 295 

The second trade-off axis reflected the strategy axis of resource acquisition versus 296 

conservation, in line with the leaf-, stem- and plant economics spectrum, and the growth-297 

survival trade-off [1,2,3,5,7,49]. Species with cost-efficient leaf area display (high SLA) 298 

marked the acquisitive side of this strategy axis; in dry forest this was also associated with 299 

large laminas and petioles. High SLA enhances light capture, leaf cooling and gas exchange 300 

and enables high photosynthetic capacity and growth rates [e.g. 50]. Species with high leaf 301 

density, LDMC and WD marked the conservative side of this strategy axis. Leaf dry matter 302 

content and leaf density are indicators of leaf lifespan, resistance against damage [51] and 303 

tolerance to drought; dense leaves have smaller cells with thicker and firmer cell walls 304 

restricting the modulus of elasticity, thereby avoiding loss of turgor at low leaf water 305 

potential [52,53]. High WD is associated with thin and short xylem vessels, thick cell walls, 306 

small pit-pores and decreased lumen area, and thus species with dense wood are more 307 

resistant against xylem cavitation [54, but see also 55]. High WD also reduces the risk of 308 

damage in storms and of stem rot by pathogens [56,57], and indicates drought resistance in 309 

drier habitats, where xylem cavitation is the most important cause of tree death [58]. Notably, 310 

in our study wood density was associated with the leaf economics spectrum, in line with 311 

previous work linking stem and leaf economics [5,43,59], but contrasting with studies 312 

suggesting that leaf economics spectrum and wood economics spectrum are largely 313 

decoupled [49,60].  314 

Dry and wet forest succession are characterized by different multivariate strategy axes 315 

We used the community-weighted means of species scores on the two PCA axes to quantify 316 

the position of secondary forest communities along these spectra (or multivariate strategy 317 
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axes) of trait variation. Doing so, we found that in both dry and wet forest, directional 318 

changes in the dominance of plant strategies took place with secondary succession (Fig. 3). 319 

However, the main axis of change was different for dry and wet forest. We found that the 320 

first PCA axis, reflecting seed size and deciduousness, was the main axis for successional 321 

change in dry forest while the second PCA axis, reflecting the acquisitive -conservative 322 

strategy axis, was the main axis for successional change in wet forest (Fig. 3). This indicated 323 

that successional changes in multivariate plant strategies in dry and wet tropical forest were 324 

characterized by independent axes of plant strategy variation. If indeed dry forest succession 325 

is mainly driven by the water gradient and wet forest succession by the light gradient, this 326 

would indicate that drought and shade tolerance are largely decoupled, and that these abilities 327 

depend on different trait combinations, as has been found in other studies [61,62,63]. 328 

In dry forest the main axis of variation was not the acquisitive conservative trade-off, 329 

as we anticipated, but the axis that described seed size and drought avoidance strategies. Dry 330 

forest changes in functional composition were characterized by the gradient of compound- 331 

leaved, deciduous species early in succession towards larger-seeded species that were more 332 

often animal dispersed and had thicker leaves later in succession. This finding confirms 333 

previous studies showing that deciduousness and leaf compoundness are particularly 334 

important during the extra dry environments in early-successional stages [cf. 17,37,64]. The 335 

proportion of species that depend on animals for seed dispersal increased during tropical dry 336 

forest succession (though it remained low compared to wet forest sites: Fig. 3a), as did the 337 

seed size. This confirms that early-successional species invest in many small seeds that can 338 

travel large distances (e.g., by wind), whereas late-successional species are more likely to 339 

invest in fruits that attract biotic dispersers to enhance directional dispersal. Given that the 340 

second principal component (acquisitive/conservative strategy axis) was relatively 341 

unimportant, it is likely that in our dry forest sequence drought avoidance (characterized by 342 
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deciduousness) was more important than drought resistance (characterized by conservative 343 

traits).  344 

In wet forest, the main axis of variation was described by changes in functional composition 345 

from acquisitive to conservative trait values (Fig. 3b), a result that complies with expectations 346 

based on decreasing light availability during succession [18,24,65,66,67]. Regenerative traits 347 

did not play a role in species assembly along the gradient of wet forest succession as we 348 

found no increase in biotically-dispersed trees, nor an increase in seed size. Instead, biotic 349 

dispersal was common throughout the successional gradient, in line with previous studies 350 

[68]. Increasing seed size, an important trait for establishment success under shaded 351 

conditions [13] was not found; possibly it could start playing a role at later successional 352 

stages or in forest positioned in a more intact landscape forest-matrix.  353 

We investigated a dry (900 mm/yr) and a wet forest (3000 mm/yr) chronosequence and 354 

showed that tree species are constrained by similar trade-offs, though this had different 355 

consequences for the success of plant strategies during succession. This confirms that dry and 356 

wet forest species face different filters during succession. A challenging issue is how the 357 

relative strength of these different filters (light and water) changes along the large 358 

precipitation gradient found across tropical regions and the consequences thereof for 359 

functional composition of successional communities. This is relevant because throughout the 360 

tropics the importance of secondary and degraded forests is increasing [69] and there is great 361 

need to understand its effects on biodiversity and ecosystem functioning [70]. Moreover, 362 

restoration plantings with local species that mimic natural regeneration may be needed to 363 

speed up forest recovery and improve biodiversity conservation and ecosystem services 364 

delivery [71]. A switch from water being replaced by light as the main filter somewhere 365 

along the precipitation gradient has direct consequences for forest restoration activities and 366 

the selection of to-be-planted species with characteristics that fit with the main filters [cf. 72].  367 
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This study showed that similar trait spectra were observed among dry and wet secondary 368 

forest species, but with different consequences for succession. In dry forest succession the 369 

dominant plant strategies changed from drought avoiding species towards species that invest 370 

in large biotically dispersed seeds, which can be explained by water limitations in early 371 

succession. In wet forest succession the dominant plant strategies changed from species 372 

having acquisitive towards species with conservative strategies, which can be explained by 373 

decreasing light availability as the main driver of wet forest succession.  374 

  375 
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Data. This file contains data belonging to the article " Functional trait strategies of trees in 565 

dry and wet tropical forests are similar but differ in their consequences for succession" by M. 566 

Lohbeck, E. Lebrija-Trejos, M. Martínez-Ramos, J.A. Meave, L. Poorter and F. Bongers. 567 

Data are presented per forest type, the first two sheets containing the data from the Principal 568 

Components Analyses (Figure 1). Presented are the traits, their eigenvector scores and the 569 

species scores on the first four axes. The last two sheets present the secondary forest plot 570 

data, their fallow ages, stand basal area and their Community-Weighted Mean scores on the 571 

first two PCA axes (see methods, Figure 3 and Figure S1). 572 

 573 

Figure Legends 574 

Figure 1. Results of the Principal Component Analyses applied to functional traits of tree 575 

species from Mexican tropical dry and wet forests. (a) PCA of dry forest species (n = 51), (b) 576 

PCA of wet forest species (n = 81). Species (grey symbols) were separated based on their 577 

functional traits shown as arrows; LA= leaf area, SLA = specific leaf area, LD= leaf density, 578 

LT= leaf thickness, LDMC= leaf dry matter content, PL= petiole length, WD= wood density, 579 

LC= leaf compoundness (0=simple, 1=compound), Di= dispersal syndrome (0=abiotic, 580 

1=biotic), De= deciduousness (0=evergreen, 1=deciduous). LA and PL were ln-transformed. 581 

 582 

Figure 2. Correlation coefficients (CC) of all pairwise trait combinations (11 traits, resulting 583 

in 55 pairwise trait combinations per forest type, see Table 2) of dry forest species plotted 584 

against those of wet forest species. Correlation coefficients represent Spearman coefficients 585 

except when relating binary variables, then the Phi coefficient was used. The pairwise 586 

correlation coefficients of dry forest proved to be significantly correlated with those of the 587 

wet forest (Pearson product moment correlation [R], P < 0.001), indicating that trait spectra 588 

are consistent across the two different forest types.  589 
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 590 

Figure 3. Changes in the dominant plant strategies with succession. Stand basal area was used 591 

to indicate succession; it increased asymptotically with successional age and reflects 592 

successional change in vegetation structure. Functional composition was calculated using the 593 

community-weighted mean of species scores on the principal component axes. (a) Dry forest 594 

succession (open symbols, broken regression line) was characterized by changes along the 595 

first PCA axis (Fig. 1a) and reflected changes from deciduous species to evergreen species 596 

that invest in a secure reproductive strategy. (b) Wet forest succession (filled symbols, 597 

continuous regression line) was characterized by changes along the second PCA axis (Fig. 598 

1b) and reflected changes from an acquisitive strategy to a conservative strategy. Given is the 599 

r
2
, * P < 0.05; ** P < 0.01. See Figure S1 in supplementary materials for the trends with 600 

fallow age as an indicator of succession.  601 

 602 

 603 

Tables 604 

Table 1. Eigenvector scores of functional traits on the two main principal components for dry 605 

forest and for wet forest. Values in parentheses indicate variance accounted for by each axis.
 

606 

§
Variable was ln-transformed. 607 

Traits Dry forest Wet forest 

 PC1 (34%) PC2 (26%) PC1 (27%) PC2 (25%) 

LA
§
 -0.141 -0.378 0.446 0.026 

SLA  -0.072 -0.327 0.163 -0.352 

LDMC  -0.327 0.343 -0.158 0.528 

LD  -0.328 0.290 0.032 0.574 

LT  0.383 -0.014 -0.205 -0.231 
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PL
§
 -0.094 -0.482 0.513 0.031 

LC -0.401 0.012 0.411 0.225 

WD  -0.205 0.458 -0.275 0.364 

De  -0.424 -0.230 0.340 0.150 

Di  0.424 0.230 -0.279 -0.038 

SV  0.206 -0.025 -0.079 0.079 

 608 

  609 
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Table 2. Spearman coefficients of the pairwise relations between variables and the principal 610 

components (Fig. 1). Relations between the binary variables (LC, De and Di) are Phi 611 

coefficients. 
§
Variable was ln-transformed. Lower-left half of the matrix corresponds to dry 612 

forest species (n = 51), Upper-right half corresponds to wet forest species (n = 81).  613 

* P < 0.05, ** P < 0.01, *** P < 0.001. 614 

 PCA1 PCA2 LA§ SLA LDM

C 

LD LT PL§ LC WD De Di SV 

PCA1  -0.08 0.75 

*** 

0.33 

** 

-0.33 

** 

-0.04 -0.36 

*** 

0.89 

*** 

0.68 

*** 

-0.48 

*** 

0.48 

*** 

-0.45 

*** 

-0.23 

* 

PCA

2 

-0.01  0.08 -0.59 

*** 

0.86 

*** 

0.94 

*** 

-0.25 

* 

0.04 0.38 

*** 

0.58 

*** 

0.22 

* 

0.06 0.23 

* 

LA§ -0.18 -0.71 
*** 

 -0.07 -0.17 0.09 -0.12 0.79 
*** 

0.56 
*** 

-0.26 
* 

0.26 
* 

-0.10 -0.07 

SLA -0.16 -0.51 

*** 

0.18  -0.50 

*** 

-0.57 

*** 

-0.50 

*** 

0.11 -0.03 -0.29 

** 

0.05 -0.26 

* 

-0.10 

LDM

C 

-0.70 

*** 

0.42 

** 

-0.09 -0.24  0.80 

*** 

-0.21 -0.19 0.05 0.49 

*** 

-0.01 0.15 0.18 

LD -0.72 

*** 

0.49 

*** 

-0.16 -0.29 

* 

0.64 

*** 

 -0.27 

* 

0.07 0.34 

** 

0.45 

*** 

0.17 0.08 0.16 

LT 0.78 

*** 

-0.05 -0.01 -0.47 

*** 

-0.44 

** 

-0.65 

*** 

 -0.24 

* 

-0.31 

** 

-0.08 -0.15 0.23 

* 

-0.09 

PL§ -0.04 -0.77 

*** 

0.63 

*** 

0.09 -0.18 -0.27 0.15  0.57 

*** 

-0.35 

** 

0.36 

*** 

-0.31 

** 

-0.17 

LC -0.77 

*** 

-0.10 0.28 

* 

0.09 0.63 

*** 

0.40 

** 

-0.41 

** 

0.15  -0.07 0.47 

*** 

-0.18 0.09 

WD -0.41 

** 

0.59 

*** 

-0.29 

* 

-0.26 0.54 

*** 

0.51 

*** 

-0.29 

* 

-0.39 

** 

0.28 

* 

 -0.11 0.11 0.29 

** 

De -0.76 

*** 

-0.43 

** 

0.28 0.28 0.28 

* 

0.30 

* 

-0.49 

*** 

0.36 

** 

0.55 

*** 

0.13  -0.48 

*** 

-0.05 

Di 0.76 

*** 

0.43 

** 

-0.28 -0.28 -0.28 

* 

-0.30 

* 

0.49 

*** 

-0.36 

** 

-0.55 

*** 

-0.13 -1.00 

*** 

 0.21 

SV 0.50 

*** 

-0.02 0.25 -0.31 

* 

-0.30 

* 

-0.30 

* 

0.52 

*** 

0.18 -0.34 

* 

-0.27 -0.50 

*** 

0.50 

*** 

 

 615 

  616 



Madelon Lohbeck et al. 

 31 

Supplementary materials 617 

 618 

Figure S1. Changes in the dominant plant strategies with succession, using two different 619 

indicators of succession: stand basal area (a, b) and fallow age (c, d). Functional composition 620 

was calculated using the community-weighted mean of species scores on the principal 621 

component axes (Fig 1). Dry forest succession (open symbols, [d], broken regression line) 622 

was characterized by changes along the first PCA axis and reflected changes from deciduous 623 

species to evergreen species that invest in a secure reproductive strategy. This was significant 624 

when using stand basal area as a successional indicator (a), and when using fallow age (c). 625 

Wet forest succession (solid symbols, [w], continuous regression line) was characterized by 626 

changes along the second PCA axis and reflected changes from an acquisitive strategy to a 627 

conservative strategy. This was significant when using stand basal area as successional 628 

indicator (b), but not when using fallow age (d). Given is the r
2
, * P < 0.05; ** P < 0.01. 629 

 630 

Table S1. List of species included in this study, in alphabetical order and grouped per forest 631 

type. These species represent at least 80% of the basal area of each secondary forest plot. All 632 

species except Aragebortia sp. (wet forest) were used in the phylogenetic analysis, as for this 633 

species the family was unknown. 634 

 635 

Table S2. Phylogenetic signal for each of the functional traits for the two forest types (a: dry 636 

forest, b: wet forest). Given are Blomberg’s K [29], the variance based on the observed trait 637 

distribution on the phylogeny, the randomized mean and the statistical significance of the 638 

difference between the observed phylogenetic signal and the random scenario (based on 999 639 

randomizations).  640 

 641 
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Table S3. Spearman coefficients of the pairwise relations between Phylogenetic Independent 642 

Contrasts. Relations between the binary variables (LC, De and Di) are Phi coefficients. 643 

§
Traits were ln-transformed prior to PIC calculation. Lower-left half of the matrix 644 

corresponds to dry forest species (n = 51), Upper-right half corresponds to wet forest species 645 

(n = 80). * P < 0.05, ** P < 0.01, *** P < 0.001. These values are very similar to the original 646 

pairwise trait-correlations (Table 2), as resulting from the strong correlation between the 647 

correlation coefficient in this table and those of Table 2 (Pearson 0.97, P< 0.001)  648 

 649 
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Abstract 19 

Global plant trait studies have revealed fundamental trade-offs in plant resource economics. 20 

We evaluated such trait trade-offs during secondary succession in two species-rich tropical 21 

ecosystems that contrast in precipitation: dry deciduous and wet evergreen forests of Mexico. 22 

Species turnover with succession in dry forest is largely driven byrelates to increasing water 23 

availability and in wet forest by to decreasing light availability. We hypothesized that while 24 

functional trait trade-offs are similar in the two forest systems, the successful plant strategies 25 

in these communities will be different, as contrasting filters affect species turnover.  26 

Research was carried out in 15 dry secondary forest sites (5-63 years after abandonment) and 27 

in 17 wet secondary forest sites (<1-25 years after abandonment). We used 11 functional 28 

traits measured on 132 species to make species-trait PCA biplots for dry and wet forest and 29 

compare trait trade-offs. We evaluated whether multivariate plant strategies changed during 30 

succession, by calculating a ‘Community-Weighted Mean’ plant strategy, based on species 31 

scores on the first two PCA-axes. 32 

Trait spectra reflected two main trade-off axes that were similar for dry and wet forest 33 

species: acquisitive versus conservative species, and drought avoiding species versus 34 

evergreen species with large animal-dispersed seeds. These trait associations were consistent 35 

when accounting for evolutionary history. Successional changes in the most successful plant 36 

strategies reflected different functional trait spectra depending on the forest type. In dry forest 37 

the community changed from having drought avoiding strategies early in succession to 38 

increased abundance of evergreen strategies with larger seeds late in succession. In wet forest 39 

the community changed from species having mainly acquisitive strategies to those with more 40 

conservative strategies during succession. These strategy changes were explained by 41 

increasing water availability during dry forest succession and increasing light scarcity during 42 

wet forest succession. 43 



Madelon Lohbeck et al. 

 3 

Although similar trait spectra were observed among dry and wet secondary forest species, the 44 

consequences for succession were different resulting from contrasting environmental filters. 45 

Keywords: dry deciduous forest, functional trait, functional trait trade-off, functional strategy, 46 

Mexico, secondary succession, PCA, wet evergreen forest  47 
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Introduction 49 

Trade-offs in plant traits and resource economics are consistent at the global scale [1,2,3]. 50 

These give insight into comprehensive dimensions of multivariate functional trait variation, 51 

or what we call ‘functional trait spectra’. As functional traits are indicators of ecological 52 

strategies, the study of trait spectra and trade-offs allows us to explore the complex interplay 53 

of different strategies [4]. For example, the worldwide leaf economics spectrum runs from a 54 

plant strategy with cheap-to-construct acquisitive leaves with high photosynthetic rates that 55 

maximize resource capture to a strategy with expensive-to-construct conservative leaves that 56 

tolerate stress and physical damage and better conserve the acquired resources [2]. Such an 57 

economic spectrum has not only been found for leaves, but also for other plant organs like 58 

roots and stems [3,5], and it has been found across different climatic regions [2,6]. This 59 

economics spectrum at the tissue level underlies the trade-off between growth and survival at 60 

the whole-plant level [7], as in resource rich environments acquisitive strategies thrive by fast 61 

growth (and high mortality) whilst in resource-poor environments conservative strategies 62 

thrive by persistence (and high survival). This fundamental trade-off describes variation 63 

among plants in the established phase. In contrast, different trade-offs are found in the 64 

regenerative phase, where plants have to arrive and establish successfully at a site. As a 65 

result, traits related to the regenerative phase are largely decoupled from those related to the 66 

established phase [8]. The trade-off between seed size and seed number plays an important 67 

role in explaining the differential success of species in the regenerative phase [e.g. 9]. Small 68 

seeds are produced in large numbers and are often wind-dispersed, which is advantageous 69 

when colonizing new sites [10], but their small seed size comes at the expense of a lower per 70 

capita establishment success [11]. Large seeds produce robust seedlings [12], which is 71 

advantageous when colonizing shaded sites [13], and they are often animal-dispersed, 72 

enhancing directed dispersal to safe sites [14]. 73 
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These traits and trait trade-offs are used to explain species’ success along successional 74 

gradients. In tropical wet forest, succession is driven byrelated to a gradient of decreasing 75 

light availability over time [e.g. 15] whereas in dry forest it is driven byrelated to a gradient 76 

of increasing water availability over time [16,17]. Dry forest species experience, therefore, 77 

stressful conditions during the dry and hot early stages of succession, while wet forest species 78 

do so during the shaded late stages of succession. We showed previously that, at the 79 

community-level, the community-weighted mean (CWM) of individual functional traits 80 

changed with tropical forest succession in Mexico [17]. The type of traits that changed 81 

differed largely between dry and wet forests [18]. In dry forest early-successional 82 

communities had trait values related to drought coping tolerance and optimal light 83 

acquisition, whereas late-successional communities had trait values related to large seeds and 84 

biotic dispersal. In wet forest early-successional communities also had trait values related to 85 

optimal light acquisition, whereas late-successional communities had trait values related to 86 

increased leaf toughness. Here we expand on the previous analysis, and explore differences in 87 

species-level trait trade-offs between dry and wet forest species, and to what extent this can 88 

be translated into different multivariate plant strategies between dry and wet forest species. 89 

Since environmental gradients filter species based on multiple traits, identifying changes in 90 

multivariate plant strategies is needed to further advance our understanding of ecological 91 

restoration [cf. 19]. 92 

The present study focuses on trait trade-offs at the species level, and how multivariate plant 93 

strategies change during succession. To this end we described plant strategies using 11 94 

functional traits measured on 132 species found in 32 secondary forest sites belonging to dry 95 

and wet tropical forest in Mexico. We hypothesized the existence of two major trait- or 96 

strategy spectra, namely the spectrum of species with acquisitive versus those with 97 

conservative trait values, which is important in the established phase of plants, and the 98 
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spectrum of small seeded wind-dispersed species versus large seeded animal-dispersed 99 

species, which is important in the regeneration phase. We expected that in dry forest water is 100 

the main limiting factor, and that tree communities show a change from predominantly 101 

conservative to acquisitive strategies over time, whereas in wet forest light is the main 102 

limiting factor, and the communities show a change from predominantly acquisitive to 103 

conservative strategies over time. We also expected that the seed size spectrum would play an 104 

important role in both forest types, reflecting an increase in the proportion of large seeded 105 

animal-dispersed species along succession. 106 

Methods 107 

Ethics statement 108 

Since all secondary forest plots are located on privately owned land, permission from 109 

landowners to enter the sites and collect plant material was provided before conducting this 110 

research.  111 

Research locations 112 

Tropical dry forest. Research plots in tropical dry forest surround the village of Nizanda on 113 

the Pacific watershed of the Isthmus of Tehuantepec in Oaxaca, southern Mexico (16°39’N, 114 

95°00’W). Mean annual temperature is 26 °C and mean annual precipitation is 900 mm, of 115 

which > 90 % concentrates between late May and mid-October [20]. The vegetation is 116 

predominantly tropical dry deciduous forest, characterized by a low canopy stature (ca. 7 m 117 

tall) with a high biodiversity [21,22]. The 15 secondary forest plots (900 m
2
) with different 118 

fallow ages (6-64 years) were established on abandoned maize fields. Within each plot four 119 

parallel 5  20 m transects were set up, and further divided into four 5  5 m quadrats. In one 120 

quadrat all individuals with DBH ≥ 1cm were identified and measured, in a second all 121 

individuals with DBH ≥ 2.5 cm and in the remaining two all individuals with DBH ≥ 5 cm, 122 
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with these sampling criteria being randomly assigned to each quadrat. Variables measured on 123 

each individual were scaled up to the plot level according to sampling effort per size-class 124 

(i.e., all stems 1 cm ≤ DBH ≤ 2.5 cm were multiplied by four, and 2.5 cm ≤ DBH ≤ 5 cm by 125 

two, to make sampling effort comparable across size-classes, after which all stems are added 126 

up). For further details see Lebrija-Trejos et al. [20]. 127 

Tropical wet forest. Research plots in the tropical wet forest surround the village of Loma 128 

Bonita in the Marqués de Comillas region in Chiapas, southeastern Mexico (16°01’N, 129 

90°55’W). Mean annual temperature is 24 °C and mean annual precipitation is 3000 mm, 130 

with a dry period (< 100 mm month
-1

) from February through April [23]. The research area is 131 

characterized by small hills and valleys with sandy and clay soils of low pH (< 5.5). The 17 132 

secondary forest plots (1000 m
2
) with different fallow ages (< 1-25 years) were established 133 

on abandoned maize fields. Each plot was divided into two 10  50 m subplots. In one 134 

subplot all individuals with DBH ≥ 1 cm were identified and measured, in the second all 135 

individuals DBH  ≥ 5 cm. Again, measured variables were scaled to the plot level up 136 

according to sampling effort per size-class (i.e., stems 1 cm ≤ DBH ≤ 5 cm were multiplied 137 

by two to make sampling effort comparable to DBH ≥ 5 cm, after which all stems are added 138 

up). 139 

Functional traits 140 

Those species that made up at least 80 % of the basal area in the plots were selected for 141 

functional trait measurements (excluding cacti in dry forest, as their functional traits are 142 

difficult to compare with trees), because they accurately describe the community-weighted 143 

mean [24,25]. This resulted in a total of 132 species: 51 dry forest species and 81 wet forest 144 

species (see Table S1 in supplementary materials for the list of species per forest type). We 145 

measured seven leaf traits: leaf area (m
2
), specific leaf area- SLA (m

2
/kg), leaf dry matter 146 
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content- LDMC (g/g), leaf density (g/cm
3
), leaf thickness (mm), leaf compoundness 147 

(0=simple, 1=compound), petiole length (cm); one whole plant trait: deciduousness 148 

(0=evergreen, 1=deciduous); one stem trait: wood density- WD (g/cm
3
); and two regenerative 149 

traits: seed size (mm
3
) and dispersal syndrome (0=abiotic, 1=biotic). Traits were measured 150 

following standardized protocols [26,27]. In the wet forest sites, leaf traits were measured for 151 

two sun-lit leaves for 10 adult trees per species (5 individuals for specific force to punch) of 152 

ca. 5 m high, and in dry forest for 5 sun-lit leaves for 5 adult trees per species with a DBH of 153 

10-30 cm. Functional trait measurements took place within the study areas, but not inside the 154 

plots. For wood density measurements in the wet forest 15 of the 81 species were taken from 155 

comparable Mexican ecosystems. The binary traits leaf compoundness, deciduousness, and 156 

dispersal syndrome were scored based on field observations, local informants, herbaria, and 157 

literature; for detailed methods on functional trait measurements see supplementary material 158 

in [18]. We used species’ average trait values although we recognize that intraspecific trait 159 

variation may play an important role in species adaptation along environmental gradients. 160 

However, given the extensive species-level trait data set (132 species) together with the high 161 

species turnover during succession, for the purpose of this study we consider the use of 162 

species average trait values appropriate to test our hypotheseswe consider the use of species 163 

average trait values legitimized. 164 

Statistical analysis 165 

We used principal component analysis to quantify spectra of trait-based multivariate plant 166 

strategies for each forest type separately. The PCA biplots show the main trade-offs across 167 

(standardized) functional traits based on principal axes of variation, where binary variables 168 

are treated as dummy variables. Trait spectra for dry and wet forest species were compared 169 

by correlating the correlation coefficients of all pairwise trait combinations; in each site 11 170 

traits were measured, resulting in 55 pairwise trait correlations per site. Subsequently the 171 
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pairwise trait correlation coefficients derived from dry forest species were correlated with the 172 

pairwise trait correlation coefficients derived from wet forest species. Spearman correlation 173 

coefficients were used, since not all traits are normally distributed, except for relating the 174 

binary variables [deciduousness (De), leaf compoundness (LC) and biotic dispersal (Di)] 175 

when we used the Phi coefficient, a measure of association between binary variables whose 176 

interpretation is similar to correlation coefficients. 177 

We also examined whether the trait associations found were influenced by evolutionary 178 

histories. To this end, we recovered phylogenetic trees for the dry forest species and the wet 179 

forest species using Phylomatic [28], scaling branch lengths to one. For all traits and each 180 

forest type we explored phylogenetic signal (Blomberg’s K [29]) and compared this to 181 

random trait distributions over the phylogenetic tree, using the package “Picante” [30]. 182 

Phylogenetically independent contrasts were computed as the difference in the mean trait 183 

values for pairs of sister species and nodes, using the package “Ape” [31] and we compared 184 

whether trait associations were similar with and without considering phylogeny [32].  185 

Species scores on the first two principal components of the PCA were scaled up to 186 

community level using the Community Weighted Mean (CWM) [24,33], which is calculated 187 

as follows: 188 

     ∑      

 

   

 

where S is the total number of species, wi is the relative basal area of the i
th

 species and xi is 189 

the score on the PCA axis of the i
th

 species. Relative basal area is a measure of species’ 190 

relative contributions to the total basal area represented by functional trait measurements in 191 

each plot (which is in turn at least 80 % of total basal area in a plot). The relative basal area 192 

was used for weighting, rather than the abundance, because it reflects the species’ biomass, 193 

an indicator of plant performance and adaptation to local conditions. These community 194 
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weighted mean scores on the PCA axes reflect the average multivariate plant strategy in the 195 

community, and were regressed against stand basal area (m
2
/ha) (including cacti in the case 196 

of dry forest). Stand basal area is a structural variable of succession and logarithmically 197 

relates to forest age in both forest types [see supplementary material in 18]. Stand basal area 198 

was used, and not age, because it better reflects aboveground biomass, understory light 199 

interception and environmental conditions [16] as well as competitive interactions [34]. All 200 

statistical analyses were carried out using R v. 2.13.1 [35]; for multivariate analysis we used 201 

the package ‘Vegan’ [36]. 202 

Results 203 

The first two component axes of the PCAs for dry and wet forest species captured more than 204 

half of the variation in species trait values (Fig. 1, Table 1). The ordination biplots indicated 205 

that the spectra of functional trait-based strategies of the dry forest species were similar to 206 

those of the wet forest species. This was confirmed when the pairwise correlation coefficients 207 

of the dry forest were plotted against those of the wet forest (Fig. 2, Table 2); the highly 208 

significant positive correlation indicated that the same trait associations were found for the 209 

species of the two forest types. The first PCA axes were largely related to phenology and 210 

reproductive strategies, with deciduous, small-seeded wind-dispersed species on the left side, 211 

and species with large seeds, biotic seed dispersal, and thick leaves on the right side (Fig. 1). 212 

We will therefore refer to this axis as the deciduousness/ reproductive effort strategy axis. 213 

The second PCA axes were related to the plant economics spectrum, with species having 214 

acquisitive trait values (e.g., high SLA) at the lower side, and those having conservative trait 215 

values (e.g., high leaf density, LDMC and WD) at the upper side (Fig. 1). We refer to this 216 

axis as the acquisitive/conservative strategy axis.  217 

There were also some differences between forest types. For example, plants with large 218 

leaf laminas and petioles (high LA and PL) had an acquisitive strategy in dry forest (as they 219 
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were associated with high SLA), whereas such plants rather coincided with a drought 220 

avoiding strategy in wet forest (as they were associated with deciduousness, Fig. 1). 221 

Moreover, in dry forest a conservative strategy tended to be associated with a drought 222 

avoiding strategy, as the suite of conservative traits (LD, LDMC, WD) tended towards the 223 

left side of the biplot where species that are deciduous are positioned. Instead, in wet forest a 224 

conservative strategy tended to be associated with species that also have large seeds and that 225 

are biotically dispersed, as the conservative traits tended towards the right side of the biplot 226 

where evergreen species that invest in large biotically dispersed seeds are positioned. 227 

Phylogenetic analyses showed that most traits were distributed non-randomly over the 228 

phylogenetic tree (Table S2). Correlating the coefficients of the pairwise trait associations 229 

(Table 2) with the associations based on their phylogenetic independent contrast (Table S3) 230 

resulted in very tight relationships (Pearson coefficients of 0.97, P< 0.001, for both dry and 231 

wet forest), indicating that the phylogenetic signal did not confound the multivariate trait 232 

strategies found in this study. 233 

Directional changes in community-weighted PCA scores indicated successional 234 

turnover in multivariate plant strategies for both forest types (Fig. 3). Interestingly, the main 235 

axis that mattered was different for dry and wet forest. Successional changes in dry forest 236 

were associated with increasing species scores along the first PCA axis (from high 237 

importance of deciduousness early in succession to increased reproductive effort later in 238 

succession; Fig. 3a), whereas successional changes in wet forest were associated with 239 

increasing species scores along the second PCA axis (from acquisitive trait values early in 240 

succession to conservative trait values later in succession; Fig. 3b). Results were similar 241 

when using age instead of basal area, though dry forest change in multivariate plant strategies 242 

proved somewhat stronger whereas wet forest change was weaker and no longer significant 243 

(see Figure S1 in Supporting Information). 244 
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Discussion 245 

We found that tree species from communities growing under very contrasting conditions (dry 246 

and wet) face similar functional trait trade-offs, thus confirming the existence of universal 247 

trait spectra. The functional turnover with succession in the two forest types, however, 248 

reflected different trait spectra, and hence, the changing dominance of different plant 249 

strategies. During dry forest succession, species strategies shifted from high importance of 250 

deciduousness early in succession towards increased reproductive effort late in succession, 251 

whereas during wet forest succession species strategies changed from acquisitive towards 252 

conservative strategies. This indicated that dry and wet forest species face different filters 253 

during forest succession. 254 

Associations between traits may be influenced by evolutionary history, where the 255 

presence of particular clades with contrasting characteristics could confound their ecological 256 

interpretation [32]. Phylogenetic analyses showed that although most traits showed 257 

significant phylogenetic signal, this did not influence the trait associations found, similar to 258 

previous studies [e.g. 6]. Therefore, below we discuss the multivariate trait spectra found in 259 

this manuscript in terms of ecological strategies and their relevance for succession in dry and 260 

wet tropical forest.  261 

Dry and wet secondary forest species showed similar trait trade-offs 262 

We hypothesized the existence of two major trade-off axes underlying trait variation in dry 263 

and wet forest species, namely the acquisitive-conservative spectrum, and the seed size 264 

spectrum, with the spectra reflecting multivariate strategy axes. Our results largely confirmed 265 

this hypothesis. The first principal component reflected variation from a deciduous strategy 266 

with abiotically (mainly wind-) dispersed species towards evergreen species that invested in 267 

biotic seed dispersal, in the dry forest biotic seed dispersal also coincideding with an 268 
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increased seed size (Fig. 1). Deciduous species shed their leaves to avoid desiccation and this 269 

is an important adaptation to survive severe droughts [17,37,38], which are common in dry 270 

forest sites. In both dry and wet forests, deciduous species often also had compound leaves. 271 

Compound-leaved species often have photonastic leaves, which can avoid high insolation and 272 

therefore high temperature and excessive evaporation by folding their leaflets at noon or 273 

during the dry season (e.g., some Fabaceae species). Compoundness also increases leaf 274 

cooling and control of water loss [39] and is an efficient way of increasing leaf area for light 275 

capture [40]. In both dry and wet forest deciduousness was independent of the acquisitive-276 

conservative continuum, suggesting that deciduous and evergreen species can possess similar 277 

resource economics. This is contrary to previous research in temperate forests [41] and across 278 

forest types [42]. In line with our results, evidence from another Mexican dry forest shows 279 

that the deciduous-evergreen dichotomy does not adequately reflect the variation in leaf and 280 

stem functional traits [43]; instead, the duration of leaf retention during the dry season 281 

reflects this variation better and correlates with resource economics, where conservative 282 

species retain their leaves longer during the dry season. 283 

Biotically dispersed, evergreen species, having large seeds (in dry forest) and thick 284 

leaves marked the other end of the deciduousness/reproductive effort strategy axis. The 285 

positive correlation between seed size and biotic dispersal in dry forest has been widely found 286 

[44]. The lack of association in wet forest could be due to the fact that most species are 287 

biotically dispersed, here differences in seed volume may instead be related to different 288 

animal disperser-groups rather than the abiotic-biotic dichotomy. Biotic dispersal enhances 289 

the chance to be dispersed to safe sites, whereas larger seed size increases establishment 290 

success [12], which is important in shaded environments [13]. Across plant communities 291 

thicker leaves are associated with evergreen plants, confirming leaf thickness as a predictor of 292 

leaf lifespan [45]. Within a Bolivian tropical moist forest, however, leaf thickness is largely 293 
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unrelated to leaf lifespan [46]. The association between abiotic dispersal and deciduousness 294 

was expected: wind dispersal is common in tropical dry forest and such wind-dispersed seeds 295 

are predominantly dispersed in the dry season, when most deciduous species have shed their 296 

leaves and the forest canopy is more open, leading to more efficient wind dispersal [47,48]. 297 

The second trade-off axis reflected the strategy axis of resource acquisition versus 298 

conservation, in line with the leaf-, stem- and plant economics spectrum, and the growth-299 

survival trade-off [1,2,3,5,7,49]. Species with cost-efficient leaf area display (high SLA) 300 

marked the acquisitive side of this strategy axis; in dry forest this was also associated with 301 

large laminas and petioles. High SLA enhances light capture, leaf cooling and gas exchange 302 

and enables high photosynthetic capacity and growth rates [e.g. 50]. Species with high leaf 303 

density, LDMC and WD marked the conservative side of this strategy axis. Leaf dry matter 304 

content and leaf density are indicators of leaf lifespan, resistance against damage [51] and 305 

tolerance to drought; dense leaves have smaller cells with thicker and firmer cell walls 306 

restricting the modulus of elasticity, thereby avoiding loss of turgor at low leaf water 307 

potential [52,53]. High WD is associated with thin and short xylem vessels, thick cell walls, 308 

small pit-pores and decreased lumen area, and thus species with dense wood are more 309 

resistant against xylem cavitation [54, but see also 55]. High WD also reduces the risk of 310 

damage in storms and of stem rot by pathogens [56,57], and indicates drought resistance in 311 

drier habitats, where xylem cavitation is the most important cause of tree death [58]. Notably, 312 

in our study wood density was associated with the leaf economics spectrum, in line with 313 

previous work linking stem and leaf economics [5,43,59], but contrasting with studies 314 

suggesting that leaf economics spectrum and wood economics spectrum are largely 315 

decoupled [49,60].  316 

Dry and wet forest succession are characterized by different multivariate strategy axes 317 
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We used the community-weighted means of species scores on the two PCA axes to quantify 318 

the position of secondary forest communities along these spectra (or multivariate strategy 319 

axes) of trait variation. Doing so, we found that in both dry and wet forest, directional 320 

changes in the dominance of plant strategies took place with secondary succession (Fig. 3). 321 

However, the main axis of change was different for dry and wet forest. We found that the 322 

first PCA axis, reflecting seed size and deciduousness, was the main axis for successional 323 

change in dry forest while the second PCA axis, reflecting the acquisitive -conservative 324 

strategy axis, was the main axis for successional change in wet forest (Fig. 3). This indicated 325 

that successional changes in multivariate plant strategies in dry and wet tropical forest were 326 

characterized by independent axes of plant strategy variation. If indeed dry forest succession 327 

is mainly driven by the water gradient and wet forest succession by the light gradient, this 328 

would indicate that drought and shade tolerance are largely decoupled, and that these abilities 329 

depend on different trait combinations, as has been found in other studies [61,62,63]. 330 

In dry forest the main axis of variation was not the acquisitive conservative trade-off, 331 

as we anticipated, but the axis that described seed size and drought avoidance strategies. Dry 332 

forest changes in functional composition were characterized by the gradient of compound- 333 

leaved, deciduous species early in succession towards larger-seeded species that were more 334 

often animal dispersed and had thicker leaves later in succession. This finding confirms 335 

previous studies showing that deciduousness and leaf compoundness are particularly 336 

important during the extra dry environments in early-successional stages [cf. 17,37,64]. The 337 

proportion of species that depend on animals for seed dispersal increased during tropical dry 338 

forest succession (though it remained low compared to wet forest sites: Fig. 3a), as did the 339 

seed size. This confirms that early-successional species invest in many small seeds that can 340 

travel large distances (e.g., by wind), whereas late-successional species are more likely to 341 

invest in fruits that attract biotic dispersers to enhance directional dispersal. Given that the 342 



Madelon Lohbeck et al. 

 16 

second principal component (acquisitive/conservative strategy axis) was relatively 343 

unimportant, it is likely that in our dry forest sequence drought avoidance (characterized by 344 

deciduousness) was more important than drought resistance (characterized by conservative 345 

traits).  346 

In wet forest, the main axis of variation was described by changes in functional composition 347 

from acquisitive to conservative trait values (Fig. 3b), a result that complies with expectations 348 

based on decreasing light availability during succession [18,24,65,66,67]. Regenerative traits 349 

did not play a role in species assembly along the gradient of wet forest succession as we 350 

found no increase in biotically-dispersed trees, nor an increase in seed size. Instead, biotic 351 

dispersal was common throughout the successional gradient, in line with previous studies 352 

[68]. Increasing seed size, an important trait for establishment success under shaded 353 

conditions [13] was not found; possibly it could start playing a role at later successional 354 

stages or in forest positioned in a more intact landscape forest-matrix.  355 

We investigated a dry (900 mm/yr) and a wet forest (3000 mm/yr) chronosequence and 356 

showed that tree species are constrained by similar trade-offs, though this had different 357 

consequences for the success of plant strategies during succession. This confirms that dry and 358 

wet forest species face different filters during succession. A challenging issue is how the 359 

relative strength of these different filters (light and water) changes along the large 360 

precipitation gradient found across tropical regions and the consequences thereof for 361 

functional composition of successional communities. This is relevant because throughout the 362 

tropics the importance of secondary and degraded forests is increasing [69] and there is great 363 

need to understand its effects on biodiversity and ecosystem functioning [70]. Moreover, 364 

restoration plantings with local species that mimic natural regeneration may be needed to 365 

speed up forest recovery and improve biodiversity conservation and ecosystem services 366 

delivery [71]. A switch from water being replaced by light as the main filter somewhere 367 
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along the precipitation gradient has direct consequences for forest restoration activities and 368 

the selection of to-be-planted species with characteristics that fit with the main filters [cf. 72].  369 

This study showed that similar trait spectra were observed among dry and wet secondary 370 

forest species, but with different consequences for succession. In dry forest succession the 371 

dominant plant strategies changed from drought avoiding species towards species that invest 372 

in large biotically dispersed seeds, which can be explained by water limitations in early 373 

succession. In wet forest succession the dominant plant strategies changed from species 374 

having acquisitive towards species with conservative strategies, which can be explained by 375 

decreasing light availability as the main driver of wet forest succession.  376 

  377 
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Data. This file contains data belonging to the article " Functional trait strategies of trees in 567 

dry and wet tropical forests are similar but differ in their consequences for succession" by M. 568 

Lohbeck, E. Lebrija-Trejos, M. Martínez-Ramos, J.A. Meave, L. Poorter and F. Bongers. 569 

Data are presented per forest type, the first two sheets containing the data from the Principal 570 

Components Analyses (Figure 1). Presented are the traits, their eigenvector scores and the 571 

species scores on the first four axes. The last two sheets present the secondary forest plot 572 

data, their fallow ages, stand basal area and their Community-Weighted Mean scores on the 573 

first two PCA axes (see methods, Figure 3 and Figure S1). 574 

 575 

Figure Legends 576 

Figure 1. Results of the Principal Component Analyses applied to functional traits of tree 577 

species from Mexican tropical dry and wet forests. (a) PCA of dry forest species (n = 51), (b) 578 

PCA of wet forest species (n = 81). Species (grey symbols) were separated based on their 579 

functional traits shown as arrows; LA= leaf area, SLA = specific leaf area, LD= leaf density, 580 

LT= leaf thickness, LDMC= leaf dry matter content, PL= petiole length, WD= wood density, 581 

LC= leaf compoundness (0=simple, 1=compound), Di= dispersal syndrome (0=abiotic, 582 

1=biotic), De= deciduousness (0=evergreen, 1=deciduous). LA and PL were ln-transformed. 583 

 584 

Figure 2. Correlation coefficients (CC) of all pairwise trait combinations (11 traits, resulting 585 

in 55 pairwise trait combinations per forest type, see Table 2) of dry forest species plotted 586 

against those of wet forest species. Correlation coefficients represent Spearman coefficients 587 

except when relating binary variables, then the Phi coefficient was used. The pairwise 588 

correlation coefficients of dry forest proved to be significantly correlated with those of the 589 

wet forest (Pearson product moment correlation [R], P < 0.001), indicating that trait spectra 590 

are consistent across the two different forest types.  591 
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 592 

Figure 3. Changes in the dominant plant strategies with succession. Stand basal area was used 593 

to indicate succession; it increased asymptotically with successional age and reflects 594 

successional change in vegetation structure. Functional composition was calculated using the 595 

community-weighted mean of species scores on the principal component axes. (a) Dry forest 596 

succession (open symbols, broken regression line) was characterized by changes along the 597 

first PCA axis (Fig. 1a) and reflected changes from deciduous species to evergreen species 598 

that invest in a secure reproductive strategy. (b) Wet forest succession (filled symbols, 599 

continuous regression line) was characterized by changes along the second PCA axis (Fig. 600 

1b) and reflected changes from an acquisitive strategy to a conservative strategy. Given is the 601 

r
2
, * P < 0.05; ** P < 0.01. See Figure S1 in supplementary materials for the trends with 602 

fallow age as an indicator of succession.  603 

 604 

 605 

Tables 606 

Table 1. Eigenvector scores of functional traits on the two main principal components for dry 607 

forest and for wet forest. Values in parentheses indicate variance accounted for by each axis.
 

608 

§
Variable was ln-transformed. 609 

Traits Dry forest Wet forest 

 PC1 (34%) PC2 (26%) PC1 (27%) PC2 (25%) 

LA
§
 -0.141 -0.378 0.446 0.026 

SLA  -0.072 -0.327 0.163 -0.352 

LDMC  -0.327 0.343 -0.158 0.528 

LD  -0.328 0.290 0.032 0.574 

LT  0.383 -0.014 -0.205 -0.231 
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PL
§
 -0.094 -0.482 0.513 0.031 

LC -0.401 0.012 0.411 0.225 

WD  -0.205 0.458 -0.275 0.364 

De  -0.424 -0.230 0.340 0.150 

Di  0.424 0.230 -0.279 -0.038 

SV  0.206 -0.025 -0.079 0.079 

 610 

  611 
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Table 2. Spearman coefficients of the pairwise relations between variables and the principal 612 

components (Fig. 1). Relations between the binary variables (LC, De and Di) are Phi 613 

coefficients. 
§
Variable was ln-transformed. Lower-left half of the matrix corresponds to dry 614 

forest species (n = 51), Upper-right half corresponds to wet forest species (n = 81).  615 

* P < 0.05, ** P < 0.01, *** P < 0.001. 616 

 PCA1 PCA2 LA§ SLA LDM

C 

LD LT PL§ LC WD De Di SV 

PCA1  -0.08 0.75 

*** 

0.33 

** 

-0.33 

** 

-0.04 -0.36 

*** 

0.89 

*** 

0.68 

*** 

-0.48 

*** 

0.48 

*** 

-0.45 

*** 

-0.23 

* 

PCA

2 

-0.01  0.08 -0.59 

*** 

0.86 

*** 

0.94 

*** 

-0.25 

* 

0.04 0.38 

*** 

0.58 

*** 

0.22 

* 

0.06 0.23 

* 

LA§ -0.18 -0.71 
*** 

 -0.07 -0.17 0.09 -0.12 0.79 
*** 

0.56 
*** 

-0.26 
* 

0.26 
* 

-0.10 -0.07 

SLA -0.16 -0.51 

*** 

0.18  -0.50 

*** 

-0.57 

*** 

-0.50 

*** 

0.11 -0.03 -0.29 

** 

0.05 -0.26 

* 

-0.10 

LDM

C 

-0.70 

*** 

0.42 

** 

-0.09 -0.24  0.80 

*** 

-0.21 -0.19 0.05 0.49 

*** 

-0.01 0.15 0.18 

LD -0.72 

*** 

0.49 

*** 

-0.16 -0.29 

* 

0.64 

*** 

 -0.27 

* 

0.07 0.34 

** 

0.45 

*** 

0.17 0.08 0.16 

LT 0.78 

*** 

-0.05 -0.01 -0.47 

*** 

-0.44 

** 

-0.65 

*** 

 -0.24 

* 

-0.31 

** 

-0.08 -0.15 0.23 

* 

-0.09 

PL§ -0.04 -0.77 

*** 

0.63 

*** 

0.09 -0.18 -0.27 0.15  0.57 

*** 

-0.35 

** 

0.36 

*** 

-0.31 

** 

-0.17 

LC -0.77 

*** 

-0.10 0.28 

* 

0.09 0.63 

*** 

0.40 

** 

-0.41 

** 

0.15  -0.07 0.47 

*** 

-0.18 0.09 

WD -0.41 

** 

0.59 

*** 

-0.29 

* 

-0.26 0.54 

*** 

0.51 

*** 

-0.29 

* 

-0.39 

** 

0.28 

* 

 -0.11 0.11 0.29 

** 

De -0.76 

*** 

-0.43 

** 

0.28 0.28 0.28 

* 

0.30 

* 

-0.49 

*** 

0.36 

** 

0.55 

*** 

0.13  -0.48 

*** 

-0.05 

Di 0.76 

*** 

0.43 

** 

-0.28 -0.28 -0.28 

* 

-0.30 

* 

0.49 

*** 

-0.36 

** 

-0.55 

*** 

-0.13 -1.00 

*** 

 0.21 

SV 0.50 

*** 

-0.02 0.25 -0.31 

* 

-0.30 

* 

-0.30 

* 

0.52 

*** 

0.18 -0.34 

* 

-0.27 -0.50 

*** 

0.50 

*** 

 

 617 
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Supplementary materials 619 

 620 

Figure S1. Changes in the dominant plant strategies with succession, using two different 621 

indicators of succession: stand basal area (a, b) and fallow age (c, d). Functional composition 622 

was calculated using the community-weighted mean of species scores on the principal 623 

component axes (Fig 1). Dry forest succession (open symbols, [d], broken regression line) 624 

was characterized by changes along the first PCA axis and reflected changes from deciduous 625 

species to evergreen species that invest in a secure reproductive strategy. This was significant 626 

when using stand basal area as a successional indicator (a), and when using fallow age (c). 627 

Wet forest succession (solid symbols, [w], continuous regression line) was characterized by 628 

changes along the second PCA axis and reflected changes from an acquisitive strategy to a 629 

conservative strategy. This was significant when using stand basal area as successional 630 

indicator (b), but not when using fallow age (d). Given is the r
2
, * P < 0.05; ** P < 0.01. 631 

 632 

Table S1. List of species included in this study, in alphabetical order and grouped per forest 633 

type. These species represent at least 80% of the basal area of each secondary forest plot. All 634 

species except Aragebortia sp. (wet forest) were used in the phylogenetic analysis, as for this 635 

species the family was unknown. 636 

 637 

Table S2. Phylogenetic signal for each of the functional traits for the two forest types (a: dry 638 

forest, b: wet forest). Given are Blomberg’s K [29], the variance based on the observed trait 639 

distribution on the phylogeny, the randomized mean and the statistical significance of the 640 

difference between the observed phylogenetic signal and the random scenario (based on 999 641 

randomizations).  642 

 643 
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Table S3. Spearman coefficients of the pairwise relations between Phylogenetic Independent 644 

Contrasts. Relations between the binary variables (LC, De and Di) are Phi coefficients. 645 

§
Traits were ln-transformed prior to PIC calculation. Lower-left half of the matrix 646 

corresponds to dry forest species (n = 51), Upper-right half corresponds to wet forest species 647 

(n = 80). * P < 0.05, ** P < 0.01, *** P < 0.001. These values are very similar to the original 648 

pairwise trait-correlations (Table 2), as resulting from the strong correlation between the 649 

correlation coefficient in this table and those of Table 2 (Pearson 0.97, P< 0.001)  650 

 651 


